
Carlos Rosales-Fernandez

2019 ALCF Computational Performance Workshop

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

2

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance
tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT.

Copyright © 2019, Intel Corporation. All rights reserved. Intel, the Intel logo, Pentium, Xeon, Core, VTune, OpenVINO, Cilk, are trademarks of
Intel Corporation or its subsidiaries in the U.S. and other countries.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
3

Overview

This talk is not intended to teach basic MPI or OpenMP*, but rather focus on
hybrid MPI+OpenMP execution and advanced OpenMP capabilities

§ Hybrid Computing: brief introduction to MPI and OpenMP

§ OpenMP tasking

§ Using OpenMP SIMD instructions

§ OpenMP affinity

§ Pure OpenMP

§ Hybrid MPI+OpenMP

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
4

Hybrid Computing

Modern computers require multiple levels of parallelism to be effective

§ System level

§ Distributed over a network fabric (Cray* Dragonfly)

§ Explicit communication (MPI)

§ Node level

§ Across cores on a shared memory platform

§ Across hardware threads within a core

§ Core level

§ Using vector instructions (Intel® Advanced Vector Extensions 512 - AVX512)

§ Exploiting multiple issue capabilities

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
5

What is MPI?

MPI stands for Message Passing Interface.

§ Multi-language message passing standard API for parallelism

§ Portable and scalable model for distributed memory parallel programming

§ Language support for C/C++/FORTRAN.

§ Provides APIs and environment variables to control the execution of parallel
codes.

§ Latest specs and examples are available at http://www.mpi-forum.org

§ Multiple implementations (Intel® MPI Library, Cray MPICH*, Mvapich2,
OpenMPI, …)

http://www.mpi-forum.org/

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
6

MPI Programming Model

Once MPI is initialized a number of processes are spawned which execute the
same code in parallel until explicit synchronization is requested.

Memory spaces are separate, and information must be explicitly exchanged.

There is no automatic workload division across processes (MPI ranks)

MPI defines API calls to establish explicit communication

§ Point-to-point calls (send, receive, …)

§ Collective calls (bcast, reduce, …)

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
7

Using the MPI API

A basic program requires only a handful of
code modifications

§ Including the right header or module

§ MPI_Init

§ MPI_Finalize

Notice that Fortran calls always have an
extra argument, the error code:

CALL MPI_FINALIZE(errCode)

In C the error code is the return value:

errCode = MPI_Finalize();

#include <mpi.h>
...
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
printf(“Hi from rank %d\n”, rank);
MPI_Finalize();

USE MPI
...
CALL MPI_INIT(errCode)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, rank, errCode)
WRITE(*,*)’Hi from rank ‘,rank
CALL MPI_FINALIZE(errCode)

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
8

What is OpenMP*?

OpenMP stands for Open Multi-Processing. It provides:

§ Standardized directive-based multi-language high-level parallelism.

§ Portable and Scalable model for shared-memory parallel programmers.

§ Language support for C/C++/FORTRAN.

§ Provides APIs and environment variables to control the execution of parallel regions.

§ Latest specs and examples are available at http://www.openmp.org/specifications/.

§ Supported by LLVM, Visual Studio Compiler, Intel Compiler, GNU GCC and others.

http://www.openmp.org/specifications/

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
9

OpenMP* Programming Model

Real world applications are a mix of serial and inherently parallel regions.

OpenMP* provides Fork-Join Parallelism as a means to exploit inherent parallelism in an
application within a shared memory architecture.

§ Master thread executes in serial mode until a parallel construct is encountered.

§ After the parallel region ends team threads synchronize and terminate, but master
continues.

Parallel Regions

Master
Thread

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
10

OpenMP* Constructs

Parallel - thread creation

§ parallel

Work Sharing - work distribution among threads

§ do, for, sections, single

Data Sharing - variable treatment in parallel regions and serial/parallel transitions

§ shared, private

Synchronization - thread execution coordination

§ critical, atomic, barrier

Advanced Functionality

§ Tasking, SIMD, Affinity, Devices (offload)

Runtime functions and control

#pragma omp parallel
{

#pragma omp for
for(int i = 0; i < N; i++)
{

a[i] = b[i] + c[i];
}

}

Ba
si

c
Co

m
po

ne
nt

s

!$OMP PARALLEL
!$OMP DO
do i = 1, N

a(i) = b(i) + c(i);
end do

!$OMP END PARALLEL

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
11

MPI and OpenMP Working Together - Initialization

MPI treats calls in threaded code in different ways depending on the initialization used:

int MPI_Init_thread(int *argc, char ***argv, int required, int *provided)

MPI_INIT_THREAD(required, provided, ierror)

The allowed values for the required level of thread support are:

§ MPI_THREAD_SINGLE Only one thread will execute.

§ MPI_THREAD_FUNNELED The process may be multi-threaded, but only the main thread will
make MPI calls (all MPI calls are funneled to the main thread).

§ MPI_THREAD_SERIALIZED The process may be multi-threaded, and multiple threads may
make MPI calls, but only one at a time: MPI calls are not made concurrently from two distinct
threads (all MPI calls are serialized).

§ MPI_THREAD_MULTIPLE Multiple threads may call MPI, with no restrictions. No direct
support for thread IDs, so tags must be used with care to ensure correctness.

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
12

MPI_THREAD_SERIALIZED
§ Only one thread can execute
§ Simple implementation using single

construct
§ Implicit synchronization already

present in single construct

MPI_THREAD_FUNNELED
§ Only master thread can execute
§ Simple implementation using master

construct
§ Master has no implied barrier, so an

explicit synchronization is required

MPI+OpenMP - Common Implementations

#pragma omp master
{

MPI_Xxx(...);
}
#pragma omp barrier

!$OMP MASTER
CALL MPI_XXX(...)

!$OMP END PARALLEL
!$OMP BARRIER

#pragma omp single
{

MPI_Xxx(...);
}

!$OMP SINGLE
CALL MPI_XXX(...)

!$OMP END PARALLEL

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
14

Some Background

Prior to standard version 3.0, OpenMP* was focused exclusively on Data
Parallelism, distributing work over threads executing the same code.

This work sharing model presented some limitations

§ A need for a known loop count

§ Very limited ability for dynamic scheduling

§ Inconvenient for naturally task-parallel problems (dependencies, nesting)

Task parallelism constructs were introduced to complement the already
existing set that supported data parallelism

Task parallelism is particularly useful in irregular computing

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
15

What is an OpenMP* Task?

From the standard document: “specific instance of executable code and its data
environment”

§ Explicit task: work generated by the task construct

§ Implicit task: threads of a parallel region

In this section of the talk I will be only discussing explicit tasks.

By default tasks are deferrable, so the generating thread may execute it
immediately or queue it

#pragma omp task
myfunc();

#pragma omp task
for(int i = 0; i < N; i++){ … }

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
16

Sibling tasks

The taskwait construct can be used to wait
for deferred task completion at some point
in the code

Nested tasks

Synchronizing siblings and their
descendants requires a taskgroup

Task Synchronization

#pragma omp task
myfunc();

#pragma omp task
for(int i = 0; i < N; i++){ … }

#pragma omp taskwait

#pragma omp taskgroup
{

#pragma omp task
myfunc();

#pragma omp task
{

for(int i = 0; i < N; i++){
#pragma omp task
nestedfunc();

}
}

}

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
17

Often an application can be decomposed into
tasks which can execute simultaneously.

Following the Directed Acyclic Graph (DAG)
shown on the right:

§ Tasks A, B and C can start executing
simultaneously.

§ Task C can only be executed after A and B
complete execution.

§ Task E can only be executed after C and D
complete execution.

Task Decomposition

a = A();
b = B();
c = C(a,b);
d = D();
printf("%f\n", E(c,d));

A B

C D

E

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
18

#pragma omp parallel
{

#pragma omp single
{

#pragma omp task
a = A();
#pragma omp task
b = B();
#pragma omp task
d = D();

}
}
c = C(a, b);
printf ("%f\n", E(c,d));

Parallel Execution of Tasks

Start parallel region, forking N threads

Use a single thread to generate the tasks

Each independent code section may be defined as a task

Once generated, each task may be
performed by any available thread
in the parallel region

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice 19

Task Generation and Execution

1. Threads are spawned from master

2. Work queue is generated by single thread

generate
tasks

3. Tasks in queue are assigned to threads and executed

Task Queue
§ task 1
§ task 2
§ task 3

generate
tasks

task 1

task 2

Task Queue
§ task 1
§ task 2
§ task 3

4. Process continues until queue is empty (or sync point)

Task Queue
§ task 1
§ task 2
§ task 3

generate
tasks

task 1 task 3

task 2

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
20

#pragma omp parallel
{

#pragma omp single
{
#pragma omp task depend(out:a)
a = A();
#pragma omp task depend(out:b)
b = B();
#pragma omp task depend(out:d)
d = D();
#pragma omp task depend(in:a,b) depend(out:c)
c = C(a, b);
#pragma omp task depend(in:c,d)
printf ("%f\n", E(c,d));

}
}

depend clause allows to specify
dependencies among tasks

depend(<in|out|inout>:<variables>)

Based on dependences C() can start
executing once A() and B() are done.

Using the depend clause makes it
possible to execute C() and D()
simultaneously

Better Scheduling with Depend Clause

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
21

void merge_sort_openmp(int a[], int tmp[], int first, int last)
{
if (first < last) {
int middle = (first + last + 1) / 2;
if (last - first < 5000) {
merge_sort(a, tmp, first, middle - 1);
merge_sort(a, tmp, middle, last);

} else {
#pragma omp task
merge_sort_openmp(a, tmp, first, middle – 1);
#pragma omp task
merge_sort_openmp(a, tmp, middle, last);
#pragma omp taskwait

}
merge(a, tmp, first, middle, last);

}
}

Merge sort is common recursive
algorithm

§ Its recursive nature used to pose a
challenge in terms of expressing the
parallelism.

§ OpenMP* Tasking helps express the
parallelism in recursive calls as shown
below.

§ Explicit taskwait synchronization
forces a wait until all sibling tasks
complete execution.

§ Merging phase can’t start until all the
tasks spawned above have completed.

Parallelize Recursions

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
22

Other Interesting Tasking Tidbits

Tasks can be stopped and continued (at scheduling points). By default tasks are
tied so they can only be continued by the same thread that started them (hot
cache). This behavior can be overridden with the untied clause

#pragma omp task untied

You may introduce your own scheduling points using the taskyield directive

#pragma omp taskyield

The taskloop directive may be used to schedule loop iterations as independent
tasks with a single generator (Intel® Compiler version 18+)

#pragma omp taskloop [[grainsize|numtask] [untied] [nogroups] [priority]]
for(i = 0; i < N; i++){ …}

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
23

Tasking Summary

Introduced to enable task-parallelism in shared memory architectures

Mostly used in irregular computing

Tasks are typically generated by a single thread

Dependencies can be specified to improve scheduling efficiency

Untied task generators can ensure progress

First-private is default data-sharing attribute

Shared variables remain shared

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
25

OpenMP* SIMD

A few critical capabilities were introduced in OpenMP* with the standard
specification 4.0 (not an exhaustive list!)

§ Target Constructs : Accelerator support

§ Task Groups/Dependencies : Runtime task dependencies & synchronization

§ SIMD : fine grained data level parallelism

§ Affinity : Pinning workers to cores/HW threads

Refinements to SIMD were also introduced in specification 4.5

SIMD is of critical importance on Theta due to the 512bit width of the KNL processors

Affinity is also of critical importance with 256 threads per socket

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
26

Multiple clauses available

§ safelen(length)

§ simdlen(length)

§ linear(list[:linear-step])

§ aligned(list[:alignment])

§ private(list)

§ lastprivate(list)

§ reduction(op: list)

§ collapse(n)

The OpenMP* SIMD directive

#pragma omp simd [clause]
for(int i = 0; i < N; i++)
{
...

}

!$omp simd [clause]
do i = 1, N
...

end do
!$omp end simd

WARNING: The compiler
ignores dependencies when
using the simd directive .

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
27

Details and Limitations

Do/For-loop has to be in “canonical loop form” (see OpenMP 4.0 API:2.6)

safelen(n) : The compiler can assume a vectorization for a vector of length
of n to be safe

simdlen(n) : Preferred vector length

linear(var:step) : For every iteration of the original scalar loop var is
incremented by step. Therefore it will be incremented by step * vector_length
for the vectorized loop.

aligned(var:base): Assert that var is aligned to base bytes; (default is
architecture specific alignment)

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
28

SIMD Example

This example instructs the compiler to ignore data dependencies, asserts array
alignment, and indirectly mitigates the control flow dependence.

OpenMP* SIMD must be enabled at compilation time with either -qopenmp
or -qopenmp-simd flags

#pragma omp simd safelen(32) aligned(a:64, b:64)
for(int i = 0; i < N; i++)
{
a[i] = (a[i] > 1.0) ? a[i]*b[i] : a[i+off]*b[i];

}

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
29

Applying the declare simd construct to a
function creates one or more versions of
the function that can process multiple
arguments using SIMD instructions from a
single invocation from a SIMD loop.

Multiple clause options

§ simdlen(length)

§ linear(list[:linear-step])

§ aligned(list[:alignment])

§ uniform(list)

§ inbranch

§ notinbranch

SIMD Enabled Functions

#pragma omp declare simd [clause]
double work(double *a,double *b,int off);

function work(a,b,off)
!$omp omp declare simd [clause]
implicit none
integer :: off
double precision :: a(*), b(*)
...
end function

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
30

SIMD Enabled Function Example

#pragma omp declare simd simdlen(16) notinbranch uniform(a, b, off)
double work(double *a, double *b, int i, int off)
{
return (a[i] > 1.0) ? a[i]*b[i] : a[i + off]*b[i];

}

void vec2(double *a, double *b, int off, int len)
{
#pragma omp simd safelen(64) aligned(a:64, b:64)
for(int i = 0; i < len; i++)
{

a[i] = work(a, b, i, off);
}

}

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
31

SIMD + Threads

By combining syntax we can both parallelize and vectorize a loop:

#pragma omp parallel for simd [clause]

!$omp parallel do simd [clause]

Where the clauses are those valid for either a do/for directive or a simd
directive.

Loop will be distributed among threads using chunks that are multiples of the
vector size

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Thread Affinity in OpenMP*

OpenMP* 4.0 introduces the concept of Places and Policies
§ Set of threads running on one or more processors
§ Places can be defined by the user
§ Predefined places available: threads, cores, sockets
§ Predefined policies : spread, close, master

And means to control these settings
§ Environment variables OMP_PLACES and OMP_PROC_BIND
§ Clause proc_bind for parallel regions

Optimal settings depend on application and workload

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
34

Pure OpenMP* on Theta

For pure OpenMP* based codes the most effective way to set affinity is to
disable affinity in aprun and then use OpenMP settings to bind threads.

Disabling affinity with aprun is simple:

$ aprun -n 1 -N 1 -cc none ./exe

Now threads can be pinned to specific hardware resources using the
OMP_PLACES and OMP_PROC_BIND environmental variables.

Rich set of options with lots of flexibility and configuration granularity, but a few
simple setups cover the vast majority of production cases.

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
35

Pinning Step 1: OMP_PLACES

Two levels of granularity. You may specify a policy:

OMP_PLACES=<policy>

Where policy may be

§ sockets : threads are allowed to float on sockets (multiple cores)
§ cores : threads are allowed to float on cores (multiple logical processors)
§ threads : threads are bound to specific logical processors

Or you may specify a list:

OMP_PLACES={lower_bound:length:stride}:repeat:increment

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
36

Pinning Step 2: OMP_PROC_BIND

To specify how threads are bound within the defined places use:
OMP_PROC_BIND=<policy>

Where policy must be chosen from:

§ close : threads paced consecutively, as near to the master place as possible

§ spread : threads spread equally on hardware to use most resources
§ master : threads placed on master place to enhance locality

Note that specifying master could lead to heavy oversubscription of hardware
resources, depending on the defined places.

It is possible to print out your pining specification as interpreted by OpenMP* using
OMP_DISPLAY_ENV=true

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
37

Some examples

OMP_NUM_THREADS=4; OMP_PLACES=“{0:4:2}”

Bound to [0] [2] [4] [6]

OMP_NUM_THREADS=4; OMP_PLACES=threads; OMP_PROC_BIND=close

Bound to [0] [64] [128] [192]

OMP_NUM_THREADS=4; OMP_PLACES=threads; OMP_PROC_BIND=spread

Bound to [0] [16] [32] [48]

OMP_NUM_THREADS=4; OMP_PLACES=cores; OMP_PROC_BIND=spread

Bound to [0,64,128,192] [16, 80, 144, 208] [32, 96, 160, 224] [48, 112, 176, 240]

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
38

When using hybrid applications aprun must be configured to create pinning ranges
for each MPI task, and then OpenMP variables may be set to control thread pinning
within each rank processor range. Example: 4 MPI tasks, 16 , 8 nodes

export OMP_NUM_THREADS=16
export OMP_PLACES=cores;
export OMP_PROC_BIND=spread
aprun -n 32 -N 4 -cc depth -d 64 -j 4 ./exe

Thread 0 Thread 1 … Thread 15

Task 0 [0, 64, 128, 192] [1, 65, 129, 193] … [15, 79, 143, 207]

Task 1 [16, 80, 144, 208] [17, 81, 145, 209] … [31, 95, 159, 223]

Task 2 [32, 96, 160, 224] [33, 97, 161, 225] … [47, 111, 175, 239]

Task3 [48, 112, 176, 240] [49, 113, 177, 241] … [63, 127, 191, 255]

Hybrid MPI + OpenMP*

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
39

NUMA considerations

Locality

§ Local memory accesses reduce latency.

§ Use Linux first touch policy to your advantage by initializing data in an OpenMP* loop in the
same way that it will be used later.

MCDRAM

§ Provides higher bandwidth

§ Important to make a conscious choice if running on flat mode

If running on flat mode you may use numactl to attach to the numa node 1 (MCDRAM) :

aprun -n <ntot> -N <ppn> numactl --membind=1 ./exe
aprun -n <ntot> -N <ppn> numactl --preferred=1 ./exe

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
40

Recommended settings for Theta

The following setup is recommended for jobs using up to 4 threads per core
OMP_PLACES=cores

OMP_PROC_BIND=spread

aprun -n <totalTasks> -N <tasksPerNode> -cc depth -d 256/<tasksPerNode> -j 4

If using multiple threads per core you may want to test the effect of changing
the default wait policy to passive:
OMP_WAIT_POLICY=passive

